

BioMedical Admissions Test (BMAT)

Section 2: Chemistry

Topic C9: Acids, Bases, and Salts

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Topic C9: Acids, Bases, and Salts

Definitions

<u>Acid</u>

An **acid** is a **proton donor**. This means that it **dissociates** to form **H**⁺ **ions** in solution.

→ For example, in H_2SO_4 , each molecule dissociates to form $2H^+$ ions and $1 SO_4^{2-}$ ion.

A strong acid fully dissociates to form H⁺ ions in solution.

→ For example, HCl is a strong acid.

A weak acid partially dissociates in a reversible reaction to form H⁺ and the other ion.

 \rightarrow An example of this is carboxylic acids such as propanoic acid.

The **concentration** of an acid or base is dependent on how many moles of acid or base there are per volume of solution.

- → A base or acid is either dilute or concentrated.
- → You can have a concentrated weak acid or a dilute strong base.

<u>рН</u>

pH measures the **concentration of H**⁺ in a solution.

- → A low pH means a high concentration of H^+ ions.
- → A change of 1 pH means there has been a change in H^+ ions by a factor of 10.

<u>Base</u>

A **base** is a **proton acceptor** or contains an OH⁻ ion. Proton acceptor means that it is able to accept a H⁺ ion in solution.

→ A soluble base is an alkali.

A strong base fully dissociates to form OH⁻ ions in solution.

→ For example, NaOH is a strong base.

A weak base only partially dissociates to form ions in solution.

 \rightarrow For example, ammonia in water only partially forms ammonium and OH⁻ ions.

▶ Image: Contraction PMTEducation

🕟 www.pmt.education

Reactions of Acids

There are some reactions of acids which you need to know.

Reactant	Products	Example
Metals	Salt + Hydrogen	$2Na_{(s)} + 2HCl_{(aq)} \rightarrow 2NaCl_{(aq)} + H_{2(g)}$
Metal Carbonates	Salt + Carbon	$Na_2CO_3 (aq) + 2HCI (aq) \rightarrow 2NaCI (aq) + H_2O (I)$
	Dioxide + Water	+ CO _{2 (g)}
Metal Oxides	Salt + Water	$2Na_2O_{(s)} + 2HCI_{(aq)} \rightarrow 2NaCI_{(aq)} + H_2O_{(l)}$

- The hydrogen produced will be seen as effervescence (bubbling).
- The reactions between a metal carbonate and an acid and between a metal oxide and an acid are **neutralisation** reactions not **redox** reactions.

Non-metallic Oxides

Some non-metallic oxides form acidic solutions when reacted with water.

- → For example, in carbonic acid $H_2O_{(I)} + CO_{2(g)} \rightarrow H_2CO_{3(aq)}$
- → This also occurs in acid rain where sulfur and nitrogen react to form sulfuric and nitric acid.

$$\begin{array}{ll} \mathsf{o} & \mathsf{SO}_{2\,(g)} + \mathsf{H}_2\mathsf{O}_{(l)} \to \mathsf{H}_2\mathsf{SO}_{3\,(aq)} \\ & \mathsf{o} & \mathsf{2NO}_{2\,(g)} + \mathsf{H}_2\mathsf{O}_{(l)} \to \ \mathsf{HNO}_{3\,(aq)} + \mathsf{HNO}_{2\,(aq)} \end{array}$$

Reactions of Bases

Some metal hydroxides dissolve in water, forming OH⁻ ions.

o For example, NaOH $_{(s)}$ + H₂O $_{(l)} \rightarrow$ Na⁺ $_{(aq)}$ + OH $_{(aq)}$

Some metal oxides react with water to form an alkaline solution.

o For example, BaO $_{(s)}$ + H₂O $_{(l)} \rightarrow Ba^{2+}_{(aq)}$ + 2OH $_{(aq)}$

Reactions of Acids with Bases

Acids and bases react in neutralisation reactions.

→ These are often exothermic as the ions are already dissociated and so no endothermic bond breaking occurs.

D O

- \rightarrow The product is water + a salt.
 - For example, HCl $_{(aq)}$ + NaOH $_{(aq)} \rightarrow$ H₂O $_{(l)}$ + NaCl $_{(aq)}$

🕟 www.pmt.education

